# Reachability: An Alternative to Connectivity for Sparse Wireless Multi-hop Networks

Srinath Perur Sridhar Iyer

KReSIT, IIT Bombay



INFOCOM 2006 – Poster Session

#### Connectivity

 Indicates the extent to which a Wireless Multi-hop Network (WMN) is connected

 Defined as the probability that all nodes in the network form a single connected component

#### Sparse Networks

- A sparse WMN is one in which nodes are not connected with high probability
- Examples:
  - Vehicular ad hoc network at low traffic density
  - Sensor network after some nodes have died
  - Incrementally deployed ad hoc network

#### Our claim . . .

- In a sparse WMN
  - Connectivity not indicative of extent to which network supports communication
  - Connectivity is unresponsive to fine changes in network parameters
- Instead use
  - Reachability: fraction of connected node pairs in the network

Reachability = 
$$\frac{\text{No. of connected node pairs}}{\text{No. of possible node pairs}}$$

# Calculating reachability



$$Rch. = \frac{NumConnectedPairs}{NC_{2}}$$

$$Rch. = \frac{17}{10C_{2}} = 0.378$$

# How connectivity can be misleading



60 static nodes in 2000m x 2000m distributed uniformly at random

### How connectivity can be misleading

- When reachability is 0.4
  - 40% of node pairs are connected
  - But connectivity is still at 0
- Connectivity remains at 0 from R = 50 to R = 320
  - Does not indicate actual extent of communication supported by the network
- Similarly, when N is varied . . .

# How connectivity can be misleading



Transmission range, R, set at 300m, and N varied

#### Context

- It is important to be able to evaluate tradeoffs between deployment parameters
  - Gupta and Kumar [1] throughput vs. node density
  - Grossglauser and Tse [2] throughput vs. delay by exploiting mobility
- Sparse networks trade connectivity for delay
  - Ex: Delay tolerant routing [3], Message Ferrying [4]
- In this context metrics like reachability allow fine-grained tradeoffs

#### Asynchronous communication



- Uniformly velocity of 5 ms<sup>-1</sup> with 30 second buffers at each node
- Difference between reachability and connectivity curves increases with mobility and asynchronous communication

# Modeling Reachability

- Static multihop network
  - N nodes
  - R uniform transmission range
  - I side of square area
- Reachability is a function of:
  - N
  - r normalised transmission range
    - r = R/I
    - Connectivity properties do not change when R and I are varied proportionally
  - Denoted as Rch<sub>N,r</sub>

#### Modeling Reachability

 If N nodes form k components with m<sub>i</sub> nodes in the i<sup>th</sup> component:

$$Rch_{N,r} = \frac{\sum_{i=1}^{k} {m_i \choose 2}}{{N \choose 2}} = \frac{\sum_{i=1}^{k} m_i (m_i - 1)}{N(N - 1)}$$

- Asymptotic bounds for Rch<sub>N,r</sub> may be possible to derive
- Since sparse networks are often small we model Rch<sub>N,r</sub> using regression on simulated data

- The logistic curve
  - Often used to model population growth
- For fixed N, reachability varies logistically with r:

$$Rch_{N,r} = \frac{1}{1 + e^{\alpha_N - \beta_N r}}$$

- r transmission range normalized with side of square
- $\alpha$  and  $\beta$  are estimated by fitting to simulation results of runs for various values of N

#### Simulations

- 55 values of N between 2 and 500
- For each N, several values of r to span reachability from 0 to 1
  - Each simulation run on 1000 randomly generated network graphs
  - Yields a table of r vs. reachability for one value of N

#### Regression

- Table corresponding to each value of N fitted to yield  $\alpha$  and  $\beta$  in the logistic equation
- lpha and eta values fitted to yield a expressions in terms of N



• Logistic Fit for N = 100

•  $\alpha$  and  $\beta$  fitted in terms of N:

$$\alpha_N = 3.815(1 - e^{-4.091 \times 10^{-2}N}) + 15.4(1 - e^{-2.055 \times 10^{-3}N}) + 3.004 \qquad 2 \le N \le 500$$

$$\beta_N = 5.141 + 0.9421N - 2.597 \times 10^{-3}N^2 + 8.42 \times 10^{-6}N^3$$

$$-1.37 \times 10^{-8}N^4 + 1.058 \times 10^{-11}N^5 - 3.209 \times 10^{-15}N^6 \qquad 2 \le N \le 500$$

 Average relative error around 3.5% for cases that didn't contribute to the model
 [5]

# **Applying Reachabilty**

- Can be applied where sparse multihop networks are encountered
  - Case study: achieving tradeoff between deployment cost and communication capability [6]
- Design tools incorporating reachability
  - Simran topological simulator for WMN (http://www.it.iitb.ac.in/~srinath/simran/)
  - Spanner Sparse network planner (http://www.it.iitb.ac.in/~srinath/tool/rch.html)

#### References

- [1] P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, March 2000.
- [2] M. Grossglauser and D. Tse, "Mobility increases the capacity of ad-hoc wireless networks," in IEEE INFOCOM, vol. 3, 2001, pp. 1360–1369.
- [3] S. Jain, K. Fall, and R. Patra, "Routing in a delay tolerant network," in ACM SIGCOMM '04, 2004, pp. 145–158.
- [4] W. Zhao, M. Ammar, and E. Zegura, "A message ferrying approach for data delivery in sparse mobile ad hoc networks," in ACM MobiHoc '04, 2004, pp. 187–198.
- [5] S. Perur and S. Iyer, "Characterization of a connectivity measure for sparse wireless multi-hop networks," To appear in Proc. of WWASN '06, in conjunction with ICDCS, July 2006.
- [6] S. Perur and S. Iyer, "Sparse multi-hop wireless for voice communication in rural India," Proc. of 12<sup>th</sup> National Conference on Communications, New Delhi, 2006, pp. 534 –538

ERROR: undefined OFFENDING COMMAND:

STACK: